Comparative Genomic Analysis of the Streptococcus dysgalactiae Species Group: Gene Content, Molecular Adaptation, and Promoter Evolution
نویسندگان
چکیده
Comparative genomics of closely related bacterial species with different pathogenesis and host preference can provide a means of identifying the specifics of adaptive differences. Streptococcus dysgalactiae (SD) is comprised of two subspecies: S. dysgalactiae subsp. equisimilis is both a human commensal organism and a human pathogen, and S. dysgalactiae subsp. dysgalactiae is strictly an animal pathogen. Here, we present complete genome sequences for both taxa, with analyses involving other species of Streptococcus but focusing on adaptation in the SD species group. We found little evidence for enrichment in biochemical categories of genes carried by each SD strain, however, differences in the virulence gene repertoire were apparent. Some of the differences could be ascribed to prophage and integrative conjugative elements. We identified approximately 9% of the nonrecombinant core genome to be under positive selection, some of which involved known virulence factors in other bacteria. Analyses of proteomes by pooling data across genes, by biochemical category, clade, or branch, provided evidence for increased rates of evolution in several gene categories, as well as external branches of the tree. Promoters were primarily evolving under purifying selection but with certain categories of genes evolving faster. Many of these fast-evolving categories were the same as those associated with rapid evolution in proteins. Overall, these results suggest that adaptation to changing environments and new hosts in the SD species group has involved the acquisition of key virulence genes along with selection of orthologous protein-coding loci and operon promoters.
منابع مشابه
Gene Repertoire Evolution of Streptococcus pyogenes Inferred from Phylogenomic Analysis with Streptococcus canis and Streptococcus dysgalactiae
Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, t...
متن کاملComparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae.
In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes spec...
متن کاملComplete Genome Sequence of Streptococcus dysgalactiae subsp. equisimilis 167 Carrying Lancefield Group C Antigen and Comparative Genomics of S. dysgalactiae subsp. equisimilis Strains
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging human pathogen that causes life-threatening invasive infections such as streptococcal toxic shock syndrome. Recent epidemiological studies reveal that invasive SDSE infections have been increasing in Asia, Europe, and the United States. Almost all SDSE carry Lancefield group G or C antigen. We have determined the complete genom...
متن کاملHorizontal gene transfer and recombination in Streptococcus dysgalactiae subsp. equisimilis
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a human pathogen that colonizes the skin or throat, and causes a range of diseases from relatively benign pharyngitis to potentially fatal invasive diseases. While not as virulent as the close relative Streptococcus pyogenes the two share a number of virulence factors and are known to coexist in a human host. Both pre- and post-genomic stu...
متن کاملPopulation Genetics of Streptococcus dysgalactiae Subspecies equisimilis Reveals Widely Dispersed Clones and Extensive Recombination
BACKGROUND Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen that can colonize and infect humans. Although most SDSE isolates possess the Lancefield group G carbohydrate, a significant minority have the group C carbohydrate. Isolates are further sub-typed on the basis of differences within the emm gene. To gain a better understanding of their molecular epid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2011